Genome editing as a new powerful tool for wheat breeding

Vladimir Nekrasov

15th WGIN Stakeholders' Meeting

Topics+

Top Stories

Magazine

Business Reports

More+ Subscribe

10 Breakthrough Technologies

The List + Past Lists +

Precise Gene Editing in Plants

CRISPR offers an easy, exact way to alter genes to create traits such as disease resistance and drought tolerance.

Applying CRISPR-Cas9 technology in model and crop plants

Model plant:

Nicotiana benthamiana

Arabidopsis thaliana

Crop plants:

Wheat

CRISPR/Cas system protects bacteria against phages

Site-directed nucleases (SDNs) are tools for inducing DNA double strand breaks (DSBs)

Nature Biotechnology **31**, 208–209 (2013)

CRISPR/Cas is an RNA-guided DNA endonuclease that includes Cas9 and sgRNA

The pipeline of targeted mutagenesis in plants using the CRISPR/Cas9 system

Testing alternative ways to deliver CRISPR/Cas reagents into wheat

Site-directed nuclease type 1 (SDN-1) activity

SDN-1:

Error-prone repair via the non-homologous end joining (NHEJ) mechanism

CRISPR/Cas

NHEJ

mismatches (SNPs) or indels at a specific site

Breeding Equivalent:

Mutation breeding

mutagenesis

NHEJ

mismatches (SNPs) or indels at a random sites

Plant Biotechnology Journal (2017), pp. 1-9

doi: 10.1111/pbi.12837

Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9

Susana Sánchez-León^{1,#}, Javier Gil-Humanes^{2,*,#}, Carmen V. Ozuna¹, María J. Giménez¹, Carolina Sousa³, Daniel F. Voytas² and Francisco Barro^{1,*}

Up to 35 out 45 gliadin genes mutated in one of the edited wheat lines

Engineering powdery mildew resistance in wheat by targeting the *TaMlo* locus

Gene editing approach (TALENs)

Genetically edited KO line (TALENs)

nature biotechnology

Nature Biotechnology 32, 947-951 (2014)

Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew

Yanpeng Wang, Xi Cheng, Qiwei Shan, Yi Zhang, Jinxing Liu, Caixia Gao [™] & Jin-Long Qiu [™]

Research Article

Received: 02 April 2014

TILLING approach

Tamlo-A1 P325L, Tamlo-B1 G319R Tamlo-D1 P335L TILLING line

mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach

Johanna Acevedo-Garcia, David Spencer, Hannah Thieron, Anja Reinstädler, Kim Hammond-Kosack, Andrew L. Phillips, Ralph Panstruga \boxtimes

First published: 25 September 2016 Full publication history

Base editors allow conversion of C-G base pairs into T-A and vice versa

nature biotechnology

Brief Communication

Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion

Yuan Zong, Yanpeng Wang, Chao Li, Rui Zhang, Kunling Chen, Yidong Ran, Jin-Long Qiu, Daowen Wang & Caixia Gao [™]

Nature Biotechnology **35**, 438–440 (2017) doi:10.1038/nbt.3811 Received: 31 October 2016 Accepted: 05 February 2017

WT: GCCGTTCCTGGTCGACATCAACAACCTCGACGGCAGCTTCGTG
T0-3:GCCGTTCCTGGTTGATATTAACAACCTCGACGGCAGCTTCGTG
T0-7:GCCGTTCCTGGTTGACATCAACAACCTCGACGGCAGCTTCGTG

Site-directed nuclease type 2 (SDN-2) activity

SDN-2:

insertion of orthologue sequence via homology-directed repair (HDR)

allele replacement

Breeding Equivalent:

variety upgrading by marker assisted backcrossing (MABC)

near isogenic lines (NILs)

Site-directed nuclease type 3 (SDN-3) activity

SDN-3:

insertion of foreign DNA via NHEJ or HDR

targeted insertion of cis- or trans-genes

Breeding Equivalent:

None, except for GMO (e.g. Bt transgene)

CRISPR/Cas applications in wheat

Gene function studies:

Gene knockout → Phenotype???

Are genetically edited crops GM or non-GM?

In the **USA**, until recently, USDA has been granting permissions for genetically edited crops not to be treated as GMO as long as they don't carry transgenic DNA

SHARE

453

22

The U.S. Department of Agriculture wants to reconsider how to regulate some genetically engineered crops.

Wayne Stadler/Flickr (CC BY-NC-ND 2.0)

Trump's agriculture department reverses course on biotech rules

By Kelly Servick Nov. 6, 2017, 5:32 PM

The U.S. Department of Agriculture (USDA) has withdrawn a plan to overhaul how it regulates biotechnology products such as genetically engineered (GE) crops.

In the **EU**, the GMO legislation is entirely based on the process. So, a crop variety produced using any recombinant nucleic acid, would be considered GMO.

European Court of Justice to provide legal opinion on the interpretation of the EU directive 2001/18/EC – started in October 2016. Ruling expected in 2018.

Acknowledgements

Malcolm Hawkesford

Caroline Sparks
Lucy Hyde
Angela Doherty
Melloney St-Leger

Damiano Martignago Sarah Raffan Alison Huttly Kostya Kanyuka

Kim Hammond-Kosack

Rowan Mitchell

Keith Edwards

Targeted modification of a plant genome is achieved via harnessing DNA double strand break (DSB) repair pathways:

1. Non-Homologous End Joining (NHEJ): small random deletions or insertions introduced

The key to targeted genome modification is to have means of introducing a DSB at a specific locus

2. Homology-Directed Repair (HDR): specified locus modification introduced

